Autoregulatory mechanism of Runx2 through the expression of transcription factors and bone matrix proteins in multipotential mesenchymal cell line, ROB-C26.

نویسندگان

  • Tomihisa Takahashi
  • Shigeyuki Kato
  • Naoto Suzuki
  • Niki Kawabata
  • Minoru Takagi
چکیده

Runx2 is essential for osteoblast differentiation and gene expression of bone matrix proteins, however, little is known about the mechanism regulating its activity. In this study, the role of Runx2 on gene expression of transcription factors, AJ18, Msx2, and Dlx5, was examined in vitro. It is known that AJ18 and Msx2 act as repressors to inhibit activity of Runx2, whereas Dlx5 promotes its activity. An expression vector inserted Runx2 cDNA was transiently overexpressed in a rat multipotential mesenchymal cell line, ROB-C26 (C26). Real time reverse transcription-PCR analysis showed that, in exogenous Runx2-overexpressing C26 cells (C26-Rx), AJ18 expression increased 1.8-fold, Msx2 expression increased 3.0-fold, and Dlx5 expression increased 2.7-fold compared to the cells transfected with vector alone (C26-Co). Luciferase assay also showed that, in C26-Rx, AJ18 promoter activity increased 2.1-fold compared to C26-Co. Furthermore, gene expression of alkaline phosphatase (ALP) and bone matrix proteins including type I collagen (Col1), osteocalcin (OC), osteopontin (OPN), and matrix Gla protein (MGP) was examined. In C26-Rx, MGP expression increased 1.8-fold, and OPN expression increased 1.4-fold compared to C26-Co. However, no significant difference in Col1, ALP, and OC expressions was detected between C26-Rx and C26-Co. These results suggest that the existence of autoregulatory feed back loops, which inhibit Runx2 activity through the interaction of AJ18, Dlx5, and Msx2 cooperating with that of MGP and OPN, interferes with the differentiation of C26 cells toward mature osteoblasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Bone Metabolism

Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...

متن کامل

Effect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells

Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...

متن کامل

بررسی اثر ایزوپرترنول (آگونیست بتا آدرنرژیک) بر تمایز سلول‌های بنیادی مزانشیمی مغز استخوان انسان به استئوبلاست در شرایط آزمایشگاهی

Background and Objective: The importance of β-adrenergic signals in bone formation and resorption has been well investigated. However, little is known about the role of β -adrenergic signals in osteoblastic differentiation of mesenchymal stem cells (MSCs), which is critically important in bone physiology and pharmacology. In this study, RUNX2 and Osteocalcin gene expression were quantified in M...

متن کامل

مقایسه بیان کمّی فاکتور نسخه‌برداری RUNX2 در تمایز سلول‌های بنیادی مزانشیمی با محیط تمایزی استئوبلاستی و داروی زولدرونیک اسید

  Background and Objectives : RUNX2 is the most specific transcription factor in osteoblastic differentiation of MSCs. In this research, RUNX2 expression was quantified in MSCs differentiated by osteogenic differentiation medium (ODM) and zoledronic acid (ZA).   Materials and Methods: In this experimental study, hMSCs were treated by osteogenic differentiation medium and ZA. RNA extraction was ...

متن کامل

Intranuclear Trafficking of RUNX/AML/CBFA/PEBP2 Transcription Factors in Living Cells: A Dissertation

The family of runt related transcription factors (RUNX/CbfaiAML/PEBP2) are essential for cellular differentiation and fetal development. RUNX factors are distrjbuted throughout the nucleus jn punctate focj that are assocjated with the nuclear matrix/scaffold and generally correspond with sjtes of active transcrjption. Truncations of RUNX proteins that eliminate the C-terminus including a 3l-ami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of oral science

دوره 47 4  شماره 

صفحات  -

تاریخ انتشار 2005